Topic: Solving Quadratic Equations by Graphing.

Standards:

21.0 - Students graph quadratic functions and know that their roots are the x-intercepts.
23.0 - Students apply quadratic functions to physical problems, such as the motion of an object under the force of gravity.

As shown on page 2, there are four types of knowledge our students need to be skilled on for a particular mathematical topic:

1. Factual/Memorization
2. Skills/Procedures
3. Concepts
4. Relational

For the topic of solving quadratic equations by graphing, I created a series of activities (see page 3) that cover several of these knowledge types. Specifically, I used the following:

1. Memory Game (pages 4-6) for Factual Teaching/Learning Event .
2. Worksheet with student work (pages 7-8) for Procedural Teaching/Learning Event.
3. Task description with student work: Part I and Part II (pages 9-12) for Conceptual Teaching/Learning Event. This task is Common Core based.

Explanation of Factual - See page 4.

Explanation of Procedural - For the procedural skills, I used a worksheet that also includes a couple of word problems. Students can show their work, and also draw the graph, directly on the worksheet. A worksheet with student work is shown on pages 7 and 8 .

Explanation of Conceptual - The conceptual task was an Egg Launch Contest (adapted from www.NCTM.org) the wording of which was modified so that the contest was held at the school where I am student teaching, and the three competing groups were the students of the three Algebra I math teachers at the school. The trajectory of the egg for each of the three competing groups was represented differently (as a table, equation, and graph). Students had to compare data and move between representations discovering the usefulness (or not) of each in determining the roots (zeros).

The task was divided into two parts as a project. In Part I the students worked in pairs to understand the task (page 9) and answer nine questions (pages 10 and 11). This gave the students the opportunity to discuss and collaborate. Part II was a quiz which students answered individually, so I could assess the learning and understanding of each student. Details of the task with student work is shown as Part I on pages 9 (task description), 10 (student work), and 11 (graphs drawn by student), and Part II on page 12 (answers to quiz).

Understanding Knowledge Types

Memor- ization	Skills/ Procedures	Concepts	Relational Knowledge
descriptions, vocabulary, formula recollection	procedures, usually doing something, (verbs)	ideas, understanding things, (nouns)	applications of multiple types of knowledge, synthesis, analysis or evaluation
How This Knowledge is Learned \& Retained			
Repeated exposure Memorization Techniques (songs, acronyms, etc.) Drill	Modeling Repeated practice of the same steps with feedback and reinforcement Repeated exposure (same context)	Exploration Inquiry/Discovery Experimentation Hands-on/ Manipulatives Multiple reps connected through writing/discussion Experienced in new contexts Prior to procedures	Exposure to openended questions Class/ group discussions Collaboration Authentic experiences
Characteristics of Assessment Questions			
Routine	Routine	Non-routine	Non-routine
No Context	Little or No Context	Can Be In Context	Often In Context
Focus on Recall	Focus on Procedure and/or Answer	Focus on Explanation \& Representation	Focus on applying knowledge
One Short Answer	One Short Answer	Extended Answer	Extended Answer
Closed	Closed	Open Middled or Open Ended	Open Middled or Open Ended
Quick/seconds	Length varies on complexity of skill	Medium/minutes	Longer/ minutes +

Target Knowledge

Factual	Procedural	Conceptual
1. Quadratic is of the form ax^{2} $+\mathrm{bx}+\mathrm{c}$, where $\mathrm{a} \neq 0$.	1. Write the quadratic equation in standard form.	Roots, zeros, x -intercept, vertex.
2. Graph is called a parabola. If >0, parabola opens upwards.	2.Calculate the vertex, y - Iftercept, and zeros downwards.	3. Graph the quadratic.
3. Axis of symmetry $(\mathrm{x}=-\mathrm{b} / 2 \mathrm{a})$ divides parabola into 2 symmetrical halves.	4. Find the x-intercepts (zeros, roots).	

Teaching/Learning Activities

Factual

1. Flashcards with definitions.
2. Memory game with multiple opportunities for winning, i.e. getting a matching pair.
3. Poster activity.
4. Interview grid.

Procedural

1. Teacher puts up problems on board and has
(i) a class discussion, and/or
(ii) students discussing in pairs and/or
(iii) students show answers on whiteboard.
2. Practice problems from textbook for homework, or worksheet in class. For in class worksheet, students can work individually or in pairs and discuss.

Conceptual

1. Quadratic Quandary (adapted from www.lausd.k12.ca.us).
Students use quadratic functions that model the height of rockets above the ground after they have been launched to graph the relationship between time and height. Students use the graph to determine the amount of time the rocket stays in the air and then describe how to find and interpret the x -intercepts of any quadratic function.
2. Egg Launch Contest (adapted from www.NCTM.org).
Students will represent quadratic functions as a table, graph, and an equation. They will compare data and move between representations discovering the usefulness (or not) of each in determining the roots (zeros).

Memory Game for Factual Information

I created a memory game with two twists to cover the factual information described in the topic plan summary. The two twists are described below:
[1] Multiple Opportunities for Success: Instead of only two cards being a match for each other, I created three groups of four cards (making a total of 12 cards), with each group embodying a mathematical concept. In each of the three groups of four, each card could be a match for any of the other three cards. This way a player has multiple opportunities for succeeding (getting a matching pair). The three groups of four cards are:

- roots; zeros; solutions; x-intercepts
- parabola; you-vee shape; curve of a $2^{\text {nd }}$-degree equation; graph of $a x^{2}+b x+c=0, a$ $\neq 0$.
- vertex; the maximum or minimum point of a parabola; the axis of symmetry of a parabola passes through this point; coordinates are $(-b /(2 a), y)$

In addition, there are also 8 other cards which can be matched in 4 pairs, such as in a traditional memory game.

- quadratic function with one root and $a>0$; (corresponding graph)
- quadratic function with two roots and $a<0$; (corresponding graph)
- quadratic function with one zero and $a>0$; (corresponding graph)
- quadratic function with two zeros and $a<0$; (corresponding graph)
[2] Memory Game with Connections: Instead of just being a conventional memory game, this is now a memory game with connections. Players not only need to recall facts (such as definitions) from memory, but for some groups they also need to exert some cognitive effort in finding an appropriate match.

An advantage of the memory game with connections is that it should get students to discuss whether or not two cards are a match for each other. If challenged by another student in the group, the student claiming the matched pair for himself (or herself) has to explain to the other students in his (or her) group why those two cards are a match. So it should create some discussion between the students.

you-vee shape

the axis of symmetry of a parabola passes through this point
quadratic function with one root, and a>0
quadratic function with one zero and a<0
quadratic function with two zeros and a>0
coordinates are
(-b/(2a), y)

9-4 Solving Quadratic Equations by Graphing
Solve each quadratic equation by graphing the related function.

Find the roots of each quadratic polynomial.

伖. Gretchen throws a ball straight up in the air. The quadratic function $y=-16 x^{2}+48 x$ models the height in feet of the ball after x seconds. Use a graphing calculator to sketch the graph of this function. Use the zeros to find how long the ball is in the air.

The ball is in the air for 3 secondsy $y=-16 x^{2}+48 x \quad x=\frac{-b}{2 a} \quad a=-16, b=48$ $\begin{aligned} & -\frac{48}{32} \Rightarrow \frac{12}{8} \Rightarrow \frac{3}{2} \\ & y=-36+72\end{aligned} \quad y=\frac{-m}{1}\left(\frac{9}{4}\right)_{1}+\frac{24}{1}\left(\frac{3}{2}\right)$, $\begin{aligned} y & =-36+72 \\ y & =36 \text { vertex }=(1.5,36)\end{aligned}$
Copyright © by Hot. Rinehar and Winston.
Al nghts reseeved.

4 $x^{2}-3 x+7=y \quad \frac{9}{4}-\frac{7}{2}+\frac{28}{4} \Rightarrow-\frac{9}{4}+\frac{28}{4} \Rightarrow \frac{11}{4} \Rightarrow 4 \frac{3}{4} \Rightarrow 4$:

There are no woots.

Holt Algebra 1

Name

\qquad Date

\qquad
${ }_{\text {LEsson }}$ Practice C

9-4 Solving Quadratic Equations by Graphing

Solve each quadratic equation by graphing the related function.

Find the roots of each quadratic polynomial.

Where are no veal voots.
The roots are -1 and 1.5 :
2. A model rocket is launched into the sky. The quadratic function $y=-16 x^{2}+32 x$ models the height in feet of the rocket after x seconds. How long is the rocket in the air?

TWe vockef is in the air for 2 seconds)

$y=-16 x^{2}+32 x \quad x=\frac{-b}{2 a} \quad a=-16, b=32$
$-\frac{32}{-32} \Rightarrow 1 \quad y=16 \quad$ vertex $=(1,16)$

35

Holt Algebra 1

Egg Launch Contest (Part 1)

Team A

1. On the graph paper provided, graph the path of Team A's egg.
2. What is the maximum height that the egg reached? How far was the egg hurled?

The maxinvin holyht that the eve reached was 16 fedt and the pegg went 8 feiet.

Team B
3. Using the equation from Team B, generate a table of values that shows different locations of the egg as it flew through the air.

Distance (x)	0	1	2	3	4	5	6	7				
Height (y)	0	10	10	18	10	10	0	-9				

4. On the graph paper provided, graph the path of Team B's egg
5. What is the maximum height that the egg reached? How far was the egg hurled?

$$
\begin{aligned}
& \text { And if murtite forex }
\end{aligned}
$$

Team C
6. Using the data from Team C, generate a table of values that shows different locations of the egg as it flew through the air.

Distance (x)	0	1	2	3	4	5	6	7	8	4	10	
Height (y)	0	4	8	10	12	12.9	12	10.9	8	4	0	

8. On the graph paper provided, re-graph the path of Team C's egg.
9. What is the maximum height that the egg reached? How far was the egg hurled?

The maximum helyht the egg reccichedis 12.5 feet
and the egg went to fyut

Page $\mathbf{1 1}$ of $\mathbf{1 2}$

Egg Launch Contest (Part 2)

10. If it is a height contest, which team will win the contest? How do you know? Explain.
if it is a height contest, Then Tpaim B will will because
on the gapts and on the chavt if went the hignest
Which is 18 feet, while the cther reams
ohly went 16 peet or 12.5 feect.
11. If it is a distance contest, which team will win the contest? How do you know? Explain.

If ilis a distance conlest, then team C
will lill because on the chart and graph, their egg launcher went the furthest wilt is 10 feect, while the other teams only went 8 feet and 6 feet
12. Deseribe the usefiulness of each representation (tabbe, equation, and graph) of the data

I think each of the meathods is all
useful in it's own way. The graph gives
us a visual image but somptimes jou
cann see the numbersand il's hot accuran The chart is pretty useful, when you use x and y, and because of the chan youc an graph realy easily the equatich is useful because you can sub
in x-values and solve for y which is the
one you want to find out, but if the
equation is long and hard it 's
very time conluming.

